effector.space_partitioning.Best(min_heterogeneity_decrease_pcg=0.1, heter_small_enough=0.001, max_depth=2, min_samples_leaf=10, numerical_features_grid_size=20, search_partitions_when_categorical=False)
Bases: Base
Choose the algorithm Cart
.
The algorithm is a greedy algorithm that finds the best split for each level in a greedy fashion.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
min_heterogeneity_decrease_pcg
|
float
|
Minimum percentage of heterogeneity decrease to accept a split. Example
|
0.1
|
heter_small_enough
|
float
|
When heterogeneity is smaller than this value, no more splits are performed. Default is
|
0.001
|
max_depth
|
int
|
Maximum number of splits to perform Default is
|
2
|
min_samples_leaf
|
int
|
Minimum number of instances per subregion Default is
|
10
|
numerical_features_grid_size
|
int
|
Number of candidate split positions for numerical features Default is
|
20
|
search_partitions_when_categorical
|
bool
|
Whether to search for partitions when the feature is categorical refers to a categorical feature of interestThis argument asks whether to search for partitions when the feature of interest is categorical. If the feature of interest is numerical, the algorithm will always search for partitions and will consider categorical features for conditioning. Default is
|
False
|
Source code in effector/space_partitioning.py
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
|