Measuring the Runtime of Global Effect Plots
This notebook analyzes the runtime \(T(\cdot)\) of Global Effect plots, which depends on:
- \(t_f\): The time required to evaluate the black-box function \(f\) on the entire dataset.
- \(N\): The number of instances in \(X\).
- \(D\): The number of features in \(X\).
- \(K\): The number of points used for centering the feature effect plot.
- \(M\): The number of evaluation points.
The key factors affecting runtime are \(t_f\), \(N\), and \(D\). Each method involves:
- Preparing the permuted/augmented dataset: This step depends only on \(N\) and is repeated independently for each feature, so it contributes \(D T_1(N)\) to the total runtime.
- Predicting on the permuted dataset: We here make the hypothesis, that \(f(X)\) runs in \(t_f\) independently of the number of instances. This is not generally true, however, it is a reasonable assumption as long as \(f(X)\) can be computed in a single pass or some batches. Additionally, the prediction must be repeated independently for each feature, contributing \(D T_2(t_f)\), except for RHALE, where all gradients are computed in a single pass, resulting in \(T_2(t_f)\).
Therefore, the runtime of each methods is: \(\(T(t_f, N, D) \approx D T_1(N) + T_2(t_f, D)\)\).
Now, let's see all these effects in practice!
import effector
import numpy as np
import timeit
import time
import matplotlib.pyplot as plt
np.random.seed(21)
def return_predict(t):
def predict(x):
time.sleep(t)
model = effector.models.DoubleConditionalInteraction()
return model.predict(x)
return predict
def return_jacobian(t):
def jacobian(x):
time.sleep(t)
model = effector.models.DoubleConditionalInteraction()
return model.jacobian(x)
return jacobian
def measure_time(method_name, features):
fit_time_list, eval_time_list = [], []
X = np.random.uniform(-1, 1, (N, D))
xx = np.linspace(-1, 1, M)
axis_limits = np.array([[-1] * D, [1] * D])
method_map = {
"pdp": effector.PDP,
"d_pdp": effector.DerPDP,
"ale": effector.ALE,
"rhale": effector.RHALE,
"shap_dp": effector.ShapDP
}
for _ in range(repetitions):
# general kwargs
method_kwargs = {"data": X, "model": model, "axis_limits": axis_limits, "nof_instances": "all"}
fit_kwargs = {"features": features, "centering": True, "points_for_centering": K}
# specialize kwargs per method
if method_name in ["d_pdp", "rhale"]:
method_kwargs["model_jac"] = model_jac
if method_name in ["rhale", "ale"]:
fit_kwargs["binning_method"] = effector.axis_partitioning.Fixed(nof_bins=20)
# init
method = method_map[method_name](**method_kwargs)
# fit
tic = time.time()
method.fit(**fit_kwargs)
fit_time_list.append(time.time() - tic)
# eval
tic = time.time()
for feat in features:
eval_kwargs = {"feature": feat, "xs": xx, "centering": True, "heterogeneity": True}
method.eval(**eval_kwargs)
eval_time_list.append(time.time() - tic)
return {"fit": np.mean(fit_time_list), "eval": np.mean(eval_time_list), "total": (np.mean(fit_time_list) + np.mean(eval_time_list))}
import matplotlib.pyplot as plt
def bar_plot(xs, time_dict, methods, metric, title, xlabel, ylabel, bar_width=0.02):
bar_width = (np.max(xs) - np.min(xs)) / 40
method_to_label = {"ale": "ALE", "rhale": "RHALE", "pdp": "PDP", "d_pdp": "d-pdp", "shap_dp": "SHAP DP"}
plt.figure()
# Calculate the offsets for each bar group
offsets = np.linspace(-2*bar_width, 2*bar_width, len(methods))
for i, method in enumerate(methods):
label = method_to_label[method]
plt.bar(
xs + offsets[i],
[tt[metric] for tt in time_dict[method]],
label=label,
width=bar_width
)
plt.title(title)
plt.xlabel(xlabel)
plt.ylabel(ylabel)
plt.xticks(xs)
plt.legend()
plt.show()
\(T_1\): runtime vs N
For one feature
t = 0.001
N = 10_000
D = 3
K = 100
M = 100
repetitions = 2
features=[0]
method_names = ["ale", "rhale", "pdp", "d_pdp"]
vec = np.array([10_000, 25_000, 50_000])
time_dict = {method_name: [] for method_name in method_names}
for N in vec:
model = return_predict(t)
model_jac = return_jacobian(t)
for method_name in method_names:
time_dict[method_name].append(measure_time(method_name, features))
for metric in ["total"]: # ["fit", "eval", "total"]:
if metric in ["fit", "eval"]:
title = "Runtime: ." + metric + "() -- single feature"
else:
title = "Runtime: .fit() + .eval() -- single feature"
bar_plot(
vec,
time_dict,
method_names,
metric=metric,
title=title,
xlabel="N: number of instances",
ylabel="time (sec)"
)
For all features
features=[i for i in range(D)]
method_names = ["ale", "rhale", "pdp", "d_pdp"]
vec = np.array([10_000, 25_000, 50_000])
time_dict = {method_name: [] for method_name in method_names}
for N in vec:
model = return_predict(t)
model_jac = return_jacobian(t)
for method_name in method_names:
time_dict[method_name].append(measure_time(method_name, features))
for metric in ["total"]: # ["fit", "eval", "total"]:
if metric in ["fit", "eval"]:
title = "Runtime: ." + metric + "() -- single feature"
else:
title = "Runtime: .fit() + .eval() -- single feature"
bar_plot(
vec,
time_dict,
method_names,
metric=metric,
title=title,
xlabel="N: number of instances",
ylabel="time (sec)"
)
Conclusion
Method | .fit() |
.eval() |
\(T_1\) (single feature) | \(T_1\) (all features) |
---|---|---|---|---|
PDP / d-PDP | \(c_1 N\) | \(c_2 N\) | \((c_1 + c_2) N\) | \(D (c_1 + c_2) N\) |
ALE | \(\epsilon\) | Free | \(\epsilon\) | \(D \epsilon \approx 0\) |
RHALE | \(\epsilon\) | Free | \(\epsilon\) | \(D \epsilon \approx 0\) |
Here, \(c_1\) and \(c_2\) are small but nonzero, meaning the runtime scales linearly with \(N\) but remains low. In contrast, \(\epsilon\) is extremely small, making ALE and RHALE effectively free in practice.
\(T_2\): runtime vs. \(t_f\):
To isolate the impact of \(t_f\), we reduce \(N\) to a small value. This assumes that the execution time of \(f(X)\) remains constant regardless of the dataset size \(X\). While this is not always true in general, it is a reasonable assumption for many ML models with vectorized implementations, as long as \(f(X)\) can be computed in a single pass.
For a single feature
t = 0.001
N = 1_000
D = 3
K = 100
M = 100
repetitions = 2
features=[0]
method_names = ["ale", "rhale", "pdp", "d_pdp"]
vec = np.array([.1, .5, 1.])
time_dict = {method_name: [] for method_name in method_names}
for t in vec:
model = return_predict(t)
model_jac = return_jacobian(t)
for method_name in method_names:
time_dict[method_name].append(measure_time(method_name, features))
for metric in ["total"]: # ["fit", "eval", "total"]:
if metric in ["fit", "eval"]:
title = "Runtime: ." + metric + "() -- single feature"
else:
title = "Runtime: .fit() + .eval() -- single feature"
bar_plot(
vec,
time_dict,
method_names,
metric=metric,
title=title,
xlabel="time (sec) to execute f(dataset)",
ylabel="time (sec)"
)
For all features
t = 0.1
N = 10_000
D = 3
K = 100
M = 100
repetitions = 2
features=[i for i in range(D)]
method_names = ["ale", "rhale", "pdp", "d_pdp"]
vec = np.array([.1, .5, 1.])
time_dict = {method_name: [] for method_name in method_names}
for t in vec:
model = return_predict(t)
model_jac = return_jacobian(t)
for method_name in method_names:
time_dict[method_name].append(measure_time(method_name, features))
for metric in ["total"]: #["fit", "eval", "total"]:
if metric in ["fit", "eval"]:
title = "Runtime: ." + metric + "() -- all features"
else:
title = "Runtime: .fit() + .eval() -- all features"
bar_plot(
vec,
time_dict,
method_names,
metric=metric,
title=title,
xlabel="time (sec) to execute f(dataset)",
ylabel="time (sec)"
)
Conclusion
Method | .fit() |
.eval() |
\(T_2\) (one feature) | \(T_2\) (all features) |
---|---|---|---|---|
PDP / d-PDP | \(t_f\) | \(t_f\) | \(2t_f\) | \(2Dt_f\) |
ALE | \(2t_f\) | Free | \(2t_f\) | \(2Dt_f\) |
RHALE | \(t_f\) | Free | \(t_f\) | \(t_f\) |
Total Runtime
Adding the two parts, we have the total runtime:
Method | \(T = T_1 + T_2\) (one feature) | \(T = T_1 + T_2\) (all features) |
---|---|---|
PDP / d-PDP | \((c_1 + c_2) N + 2 t_f\) | \(D (c_1 + c_2) N + 2 D t_f\) |
ALE | \(2 t_f\) | \(2 D t_f\) |
RHALE | \(t_f\) | \(t_f\) |