Skip to content

Measuring Runtime of Regional Effect Plots

This notebook analyzes the runtime \(T(\cdot)\) of Regional Effect plots, which depends on:

  • \(t_f\): Time to evaluate the black-box function \(f\).
  • \(N\): Number of instances in \(X\).
  • \(D\): Number of features in \(X\).
  • \(K\): Number of points for centering the feature effect plot.
  • \(M\): Number of evaluation points.

The main factors affecting runtime are \(t_f\), \(N\), and \(D\).

Runtime Breakdown

  1. Global heterogeneity computation (\(T_{global}\)):
  2. Done once for the entire dataset.
  3. Stores intermediate values for reuse.
  4. Runtime:

    • \(T_{global} = \mathcal{O}(N) + \mathcal{O}(t_f)\) for PDP and d-PDP.
    • \(T_{global} = \mathcal{O}(t_f)\) for RHALE.
  5. Cart-based subregion heterogeneity (\(T_{cart}\)):

  6. Iterates over \(D-1\) features.
  7. Evaluates \(P\) possible conditioning positions.
  8. Recursively splits the dataset up to depth \(L\).
  9. Heterogeneity is computed without re-evaluating \(f\), only splitting and indexing instances.

$$ T_{cart} = (D-1)PL \cdot T(N) $$

Total Runtime

\[ T(t_f, N, D) \approx T_{global} + T_{cart} \approx \mathcal{O}(N) + \mathcal{O}(t_f) + \mathcal{O}(DPLN) \]

Runtime is linear in all key variables. When computing for all features, it scales as \(D^2\).

Now, let's test this in practice!

import effector
import numpy as np
import timeit
import time
import matplotlib.pyplot as plt
np.random.seed(21)
def return_predict(t):
    def predict(x):
        time.sleep(t)
        model = effector.models.DoubleConditionalInteraction()
        return model.predict(x)
    return predict

def return_jacobian(t):
    def jacobian(x):
        time.sleep(t)
        model = effector.models.DoubleConditionalInteraction()
        return model.jacobian(x)
    return jacobian
def measure_time(method_name, features):
    fit_time_list, eval_time_list = [], []
    X = np.random.uniform(-1, 1, (N, D))
    xx = np.linspace(-1, 1, M)
    axis_limits = np.array([[-1] * D, [1] * D])

    method_map = {
        "pdp": effector.RegionalPDP,
        "d_pdp": effector.RegionalDerPDP,
        "ale": effector.RegionalALE,
        "rhale": effector.RegionalRHALE,
        "shap_dp": effector.RegionalShapDP
    }

    for _ in range(repetitions):
        # general kwargs
        method_kwargs = {"data": X, "model": model, "axis_limits": axis_limits, "nof_instances":"all"}
        fit_kwargs = {"features": features, "centering": True, "points_for_centering": K, "max_depth": 2}

        # specialize kwargs per method
        if method_name in ["d_pdp", "rhale"]:
            method_kwargs["model_jac"] = model_jac
        if method_name in ["rhale", "ale"]:
            fit_kwargs["binning_method"] = effector.axis_partitioning.Fixed(nof_bins=20, min_points_per_bin=0.)
            fit_kwargs.pop("centering")
            fit_kwargs.pop("points_for_centering")

        # init
        method = method_map[method_name](**method_kwargs)

        # fit
        tic = time.time()
        method.fit(**fit_kwargs)
        fit_time_list.append(time.time() - tic)

        # eval
        tic = time.time()
        for feat in features:
            eval_kwargs = {"feature": feat, "node_idx": 0, "xs": xx, "centering": True, "heterogeneity": True}
            method.eval(**eval_kwargs)
        eval_time_list.append(time.time() - tic)

    return {"fit": np.mean(fit_time_list), "eval": np.mean(eval_time_list), "total": (np.mean(fit_time_list) + np.mean(eval_time_list))}
import matplotlib.pyplot as plt

def bar_plot(xs, time_dict, methods, metric, title, xlabel, ylabel, bar_width=0.02):

    bar_width = (np.max(xs) - np.min(xs)) / 40
    method_to_label = {"ale": "ALE", "rhale": "RHALE", "pdp": "PDP", "d_pdp": "d-pdp", "shap_dp": "SHAP DP"}
    plt.figure()

    # Calculate the offsets for each bar group
    offsets = np.linspace(-2*bar_width, 2*bar_width, len(methods))

    for i, method in enumerate(methods):
        label = method_to_label[method]
        plt.bar(
            xs + offsets[i],
            [tt[metric] for tt in time_dict[method]],
            label=label,
            width=bar_width
        )

    plt.title(title)
    plt.xlabel(xlabel)
    plt.ylabel(ylabel)
    plt.legend()
    plt.show()

Runtime vs \(t_f\)

t = 0.001
N = 10_000
D = 5
K = 100
M = 100
repetitions = 2
features=[0]
method_names = ["ale", "rhale", "pdp", "d_pdp"]
vec = np.array([.1, .5, 1.])
time_dict = {method_name: [] for method_name in method_names}
for t in vec:
    model = return_predict(t)
    model_jac = return_jacobian(t)
    for method_name in method_names:
        time_dict[method_name].append(measure_time(method_name, features))
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:00<00:00,  2.13it/s]
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:00<00:00,  2.17it/s]
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:00<00:00,  1.17it/s]
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:00<00:00,  1.55it/s]
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:00<00:00,  1.33it/s]
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:00<00:00,  1.23it/s]
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:01<00:00,  1.22s/it]
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:01<00:00,  1.26s/it]
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:01<00:00,  1.28s/it]
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:01<00:00,  1.35s/it]
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:00<00:00,  1.44it/s]
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:00<00:00,  1.47it/s]
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:01<00:00,  1.55s/it]
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:01<00:00,  1.52s/it]
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:02<00:00,  2.05s/it]
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:02<00:00,  2.07s/it]
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:02<00:00,  2.26s/it]
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:02<00:00,  2.27s/it]
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:00<00:00,  1.44it/s]
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:00<00:00,  1.47it/s]
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:02<00:00,  2.52s/it]
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:02<00:00,  2.54s/it]
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:03<00:00,  3.05s/it]
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:03<00:00,  3.07s/it]
for metric in ["total"]:
    if metric in ["fit", "eval"]:
        title = "Runtime: ." + metric + "() -- single feature"
    else:
        title = "Runtime: .fit() + .eval() -- single feature"

    bar_plot(
        vec, 
        time_dict, 
        method_names,
        metric=metric,
        title=title,
        xlabel="time (sec) to execute f(dataset)",
        ylabel="time (sec)"
)

png

Runtime vs. D

t = 0.001
N = 10_000
D = 5
K = 100
M = 100
repetitions = 2
features=[0]
method_names = ["ale", "rhale", "pdp", "d_pdp"]
vec = np.array([3, 4, 5, 6])
time_dict = {method_name: [] for method_name in method_names}
for D in vec:
    model = return_predict(t)
    model_jac = return_jacobian(t)
    for method_name in method_names:
        time_dict[method_name].append(measure_time(method_name, features))
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:00<00:00,  7.50it/s]
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:00<00:00,  7.69it/s]
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:00<00:00,  3.14it/s]
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:00<00:00,  3.15it/s]
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:00<00:00,  3.61it/s]
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:00<00:00,  3.69it/s]
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:00<00:00,  2.11it/s]
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:00<00:00,  2.23it/s]
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:00<00:00,  5.43it/s]
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:00<00:00,  5.39it/s]
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:00<00:00,  2.13it/s]
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:00<00:00,  2.18it/s]
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:00<00:00,  1.88it/s]
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:00<00:00,  2.62it/s]
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:00<00:00,  1.40it/s]
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:00<00:00,  1.46it/s]
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:00<00:00,  4.10it/s]
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:00<00:00,  4.00it/s]
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:00<00:00,  1.49it/s]
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:00<00:00,  1.59it/s]
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:00<00:00,  2.11it/s]
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:00<00:00,  1.81it/s]
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:01<00:00,  1.08s/it]
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:01<00:00,  1.04s/it]
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:00<00:00,  3.39it/s]
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:00<00:00,  3.36it/s]
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:00<00:00,  1.23it/s]
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:00<00:00,  1.23it/s]
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:00<00:00,  1.76it/s]
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:00<00:00,  1.83it/s]
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:01<00:00,  1.26s/it]
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:01<00:00,  1.30s/it]
for metric in ["total"]:
    if metric in ["fit", "eval"]:
        title = "Runtime: ." + metric + "() -- single feature"
    else:
        title = "Runtime: .fit() + .eval() -- single feature"

    bar_plot(
        vec, 
        time_dict, 
        method_names,
        metric=metric,
        title=title,
        xlabel="D: number of features",
        ylabel="time (sec)"
)

png

Time vs N (number of features)

t = 0.001
N = 100_000
D = 5
T = 100
K = 100
repetitions = 2
features=[0]
method_names = ["ale", "rhale", "pdp", "d_pdp"]
vec = np.array([10_000, 20_000, 30_000])
time_dict = {method_name: [] for method_name in method_names}
for N in vec:
    model = return_predict(t)
    model_jac = return_jacobian(t)
    for method_name in method_names:
        time_dict[method_name].append(measure_time(method_name, features))
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:00<00:00,  4.29it/s]
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:00<00:00,  4.77it/s]
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:00<00:00,  1.84it/s]
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:00<00:00,  1.82it/s]
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:00<00:00,  1.95it/s]
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:00<00:00,  1.78it/s]
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:00<00:00,  1.05it/s]
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:00<00:00,  1.03it/s]
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:00<00:00,  2.61it/s]
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:00<00:00,  2.53it/s]
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:01<00:00,  1.10s/it]
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:01<00:00,  1.08s/it]
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:01<00:00,  1.09s/it]
  0%|                                                                                                                                                                                 | 0/1 [00:00<?, ?it/s]
for metric in ["total"]:
    if metric in ["fit", "eval"]:
        title = "Runtime: ." + metric + "() -- single feature"
    else:
        title = "Runtime: .fit() + .eval() -- single feature"

    bar_plot(
        vec, 
        time_dict, 
        method_names,
        metric=metric,
        title=title,
        xlabel="N: nof instances",
        ylabel="time (sec)"
)

A demanding example

t = 0.1
N = 50_000
D = 15
T = 100
K = 100
repetitions = 2
features=[0]
method_names = ["ale", "rhale", "pdp", "d_pdp"]
time_dict = {method_name: [] for method_name in method_names}
model = return_predict(t)
model_jac = return_jacobian(t)
for method_name in method_names:
    time_dict[method_name].append(measure_time(method_name, features))
time_dict
bar_plot(np.array([1, 2]), time_dict, method_names, metric="total", 
         title="a",
         xlabel="A difficult case",
         ylabel="time (sec)",
        )